内页banner
Color Sorter
  • How to choose ore color sorter? How to choose ore color sorter? Nov 24, 2022
    How to choose ore color sorter? Color sorter as a high-end material sorting equipment, has now been widely used in ore, agricultural food, oil, chemical, pharmaceutical and other industries, the significance of its existence is not only to save time, energy, high efficiency, but also can greatly improve the utilization of resources to achieve greater economic and social benefits.   How to choose the right color sorter?      It is decided by demand-oriented. The main problem in how the equipment output, sorting effect, applicable particle size range, sorting type, equipment stability, service life, price and other multiple factors, ultimately comes down to how the comprehensive cost performance of the equipment.    As a well-known enterprise deeply rooted in Hefei, the capital of colour sorter, Mingde Optoelectronics has been deeply engaged in the field of ore sorting since 2014, with independent self-research of color sorter and X-light intelligent ore sorter and artificial intelligence machine with completely independent intellectual property rights. During this period, according to the continuous accumulation of all kinds of ore sorting experience, Mingde photoelectric constantly invested in equipment development and production, always keep technical innovation, and gradually launched a large output, high precision, high stability of super cost-effective models. How to choose a manufacturer with technical advantages for ore sorting?     As a senior ore sorting manufacturer, Mingde Optoelectronics launched AI artificial intelligence sorting machine, which brings ore sorting from 2.0 color sorting era to 3.0 multi-dimensional characteristics sorting era, breaking through the limitations of color sorting technology     Colour sorting machine to artificial intelligence sorting machine development is 1 to N progress, from color sorting machine sorting can only be sorted by color, to artificial intelligence sorting machine through the ore multi-dimensional characteristics, such as texture, color, shape, color, gloss and other naked eye visible differentiation characteristics of the progress. Artificial intelligence machine can all be extracted, learning, modeling, sorting. Thus, there is a great improvement in sorting personalization, sorting diversification, and sorting efficiency.      A good product needs to be approved by the market. Our Mingde photoelectric artificial intelligence sorting machine after nearly 3 years, in the project, research and development, production, application after layers of gatekeepers, now has been widely used in talc, magnesite, wollastonite, industrial silicon, gold ore, fluorite, lithium ore and other enterprises, to solve all kinds of ore sorting problems.       Ore sorting machine as a high precision machine, used in some remote areas and complex working environment, facing a variety of tests, a perfect after-sales service system is particularly important, famous photoelectric as a well-known old photoelectric sorting manufacturers, we always adhere to the user first, the service concept of the heart escort, and practical action to achieve our commitment, set up more than ten offices in the country, timely We have set up more than ten offices in the country to respond to the needs of customers and ensure the punctuality and timeliness of after-sales service.
  • What is the working principle of color sorter? What is the working principle of color sorter? Feb 20, 2023
        What is the working principle of color sorter?   1、Selected materials from the top of the hopper into the machine, through the vibration of the vibrator device, selected materials along the channel transmission, into the sorting chamber of the observation area, and from the sensor and the background plate between the passage.   2、Under the action of light source, according to the intensity of light and color change, the system produces output signal to drive the solenoid valve work to blow out the different color particles to the waste hopper, and the good selected materials continue to fall to the finished product hopper, so as to achieve the purpose of selection.
  • The Challenges and Strategies of Photoelectric Sorting Equipment to Ore Sorting The Challenges and Strategies of Photoelectric Sorting Equipment to Ore Sorting Jul 05, 2024
    Overview Photoelectric sorting technology is a technology that uses the differences in the characteristics of materials, which has shown huge potential in the field of ore sorting. This article will explore the application of optoelectronic sorting technology in the field of ore sorting, as well as challenges and response strategies in the field of ore sorting. Application of photoelectric sorting technology in ore sorting The optoelectronic sorting technology mainly includes visible light, infrared, ultraviolet and X -ray sorting. It captures the light reflection or transmission information of the ore particles through high precision sensors, and then determines whether it is valuable by the preset intelligent algorithm, and is separated Essence Advantage 1. Improving the accuracy of the sorting: Optical sorting technology can significantly improve the accuracy of ore sorting and effectively improve raw ore products. 2. Reduce cost: By pre -throwing, the processing and cost of subsequent mining session are reduced. 3. Environmental protection: The optoelectronic sorting process does not need to add chemical reagents to reduce environmental pollution. Applications 1. Phosphorus ore sorting: Optical sorting technology shows a significant advantage in dealing with low -grade phosphorus ore resources, which can quickly remove a large amount of useless pulse stones and reduce the pressure of subsequent mining sements. 2. Gold Mine Sorting: Optical sorting technology can enrich gold ore and achieve higher economic mining products. Facing challenges and response strategies Challenge 1. Adaptability: How to adapt to more species and more complicated ore structure. 2. Stability and anti -interference ability: Improve the stability and anti -interference ability of the system. 3. Decrease cost: further reduce costs, increase cost -effectiveness. Preventive solution 1. Technical innovation: Introduce cutting -edge technologies such as artificial intelligence and big data analysis to improve the intelligent level of the sorting system. 2. Equipment upgrade: Continuously optimize the performance of photoelectric sensors and execution agencies, and improve the efficiency and accuracy of sorting. 3. Industrialization promotion: accumulate application experience and promote the popularization of technology in a larger scale. Mingde Optoelectronics Sorting Equipment For the adaptive challenges of the sorting equipment in the sorting of the ore,Mingde Optoelectronics Technology Co., Ltd. has innovatively introduced artificial intelligence technology in the field of traditional photoelectric sorting. While improving the accuracy of sorting, it has greatly expanded the types of sorting ore. For the challenge of machine stability and anti -interference ability, Mingde's machine sorting camera is a Gigabit network camera, which has clearer imaging and more accurate sorting.The machine is the whole steel frame, which adopts a split structure to avoid the impact of the vibration part on the sorting host.The sorting host adopts a closed structure, the dustproof and waterproof, so that the results of the sorting are more stable, and the machine is also a harsh environment with high dust, high pollution, and high corrosion of the machinery industry. Under the cost challenges faced by photoelectric splitting equipment, Mingde Optoelectronics Technology Co., Ltd. has worked hard and has achieved independent technical breakthroughs. The independent development of a full set of software systems solves the potential possibility of external technologies on the impact of the company's independent production restrictions and greatly reduced production costs, making machines more affordable. https://www.mdoresorting.com/mingde-ai-sorting-machine-separate-quartzmicafeldspar-from-pegmatite Conclusion The application prospects of photoelectric sorting technology in the field of ore sorting can effectively improve ore taste, reduce costs, and have good environmental protection performance. In the face of challenges, industrialization should be strengthened through technological innovation and equipment upgrades to achieve its widespread application in the field of ore sorting.
  • Common Types, Characteristics and Market Applications of Quartz Deposits Common Types, Characteristics and Market Applications of Quartz Deposits Aug 07, 2024
    We have discussed eight ore sorting methods on the market before, and I believe everyone has some understanding of ore sorting. Today, let's change the topic and discuss quartz ore. With the development of AI technology in recent years, the chip industry has become more and more prosperous, and the demand for silicon has also increased. Although the consumption of quartz has declined in the second quarter of this year, the overall situation is still good. Quartz ore is a widely distributed silicate mineral, the main component of which is silicon dioxide (SiO2). Different types of quartz ores differ in their genesis, physical and chemical properties, and industrial applications. There are roughly 7 common quartz deposits in nature. Today we will introduce them all at once, and also briefly talk about the two most popular industrial applications of quartz at this stage. 1. Natural Crystal There are large transparent quartz crystals in nature, which are mainly used for carving crafts. They are less in resources and expensive. This kind of quartz ore is mainly used for carving crafts, such as jewelry and decorations. High-quality natural crystals are also used to make optical crystal materials and piezoelectric crystal materials. 2. Granite Quartz Granite quartz, also known as pegmatite quartz, is a very popular quartz ore in the past two years. It is formed by magma and is the main raw material for producing high-purity quartz. It is used in electronic information, new materials and new energy fields, especially in the semiconductor industry, for the manufacture of quartz crucibles and other key semiconductor manufacturing equipment. 3. Vein Quartz Formed under the action of magma hydrothermal fluids, it has a single mineral composition, almost all of which is quartz, and is suitable for the production of high-purity silicon micropowders. These silicon micropowders have important applications in strategic emerging industries such as electronic information, new materials and new energy. The high purity and low iron content of vein quartz make it one of the ideal mineral raw materials for processing high-purity quartz. 4. Quartz Sandstone It is formed by the deposition and consolidation of siliceous debris and is widely used in the production of daily glass sand, glass fiber, metallic silicon, refractory materials, white carbon black, silicone, etc. Its stable geological occurrence and suitable particle size make it an important raw material in these fields. 5. Quartzite Dense and hard rock formed by regional metamorphism or thermal contact metamorphism, mainly used to make high-strength, high-hardness and wear-resistant building materials, such as artificial stone, artificial granite, artificial jade, etc. Its dense and hard characteristics make it outstanding in decorative effects and durability. 6. Powdered Quartz Natural powdered quartz with extremely fine particles and high silica content, mainly formed by weathering and disintegration of siliceous parent rock, is often used to make fine ceramics, refractory materials, etc. 7. Natural Quartz Sand Sand-like quartz mineral raw materials formed by weathering are mainly used for casting sand, 3D printing sand, etc. Its high purity and refractory properties make it indispensable in the casting industry. The above seven types of quartz deposits can be distinguished by a series of physical and chemical characteristics, including color, transparency, crystal morphology, gloss, hardness, specific gravity and specific optical properties. Here are some commonly used identification methods: 1. Color and Transparency: Different types of quartz ores may show different colors and transparency. For example, crystal is usually transparent, while agate is composed of layered quartz with different color stripes. 2. Crystal Morphology: The crystal morphology of quartz can help identify its type. For example, α-quartz and β-quartz are stable at different temperatures and have different crystal structures. In addition, quartz can also form a variety of homogeneous variants such as tridymite and cristobalite, which have unique crystal morphologies. 3. Luster and Hardness: Quartz usually has a glassy luster and a high hardness, with a Mohs hardness of 7. 4. Specific Gravity: Different types of quartz ores have different specific gravity due to their different impurity content and crystallization state. 5. Optical Properties: Some quartz ores may show birefringence, that is, light splits into two beams when passing through the mineral. This phenomenon can be detected by polarizing microscope observation. 6. Chemical Analysis: By chemically analyzing a quartz sample, its precise chemical composition can be determined and its type can be further confirmed. 7. X-ray Diffraction Analysis: XRD can be used to determine the crystal structure of quartz, thereby helping to distinguish different quartz variants. 8. Infrared Spectrum Analysis: Different types of quartz may show different absorption peaks on the infrared spectrum, which can be used as a basis for identification. For example, if we encounter quartzite and vein quartz in the field, we can base our identification on their structural characteristics and occurrence. The bedding and block structure of quartzite and the vein-like occurrence of vein quartz are important identification points. In addition, although the color of quartzite is not as bright as vein quartz, its bedding structure helps to identify it. If conditions permit, a magnifying glass can be used to observe the arrangement of quartz particles. The quartz particles in quartzite are usually smaller and more closely arranged. Different types of quartz ores are used to meet the needs of different industrial fields due to their specific physical and chemical properties. At present, the most common industrial fields of quartz ores are mainly electronic information industry and construction industry. Quartz ores are mainly used as raw materials for the following products in the electronic information industry: 1. Semiconductor Wafer Manufacturing: Quartz products play a key role in semiconductor wafer manufacturing, including quartz glass products used in key processes such as diffusion, oxidation, deposition, photolithography, etching and cleaning. These products have the characteristics of high purity, pollution-free, and high temperature resistance, ensuring the quality and performance of semiconductor wafers. 2. Single Crystal Silicon Growth: When producing single crystal silicon, quartz crucibles and quartz devices are indispensable because they can withstand high temperature environments without reacting with silicon. 3. Photolithography and Etching Processes: Quartz materials are used to make tools and containers in photolithography and etching processes, such as quartz sheets, quartz rings, and quartz boats. These tools need to have extremely high purity and chemical corrosion resistance. 4. Optical Fiber Manufacturing: Quartz fiber plays an important role in optical fiber communication. High-purity quartz is a key material for manufacturing quartz optical fiber because it determines the light transmission spectrum of the optical fiber. 5. Electronic Packaging: Quartz materials are also used for packaging electronic components to provide electrical insulation and thermal stability. Because of the physical and chemical properties of quartz stone, such as wear resistance, corrosion resistance, high temperature resistance, and easy cleaning, quartz stone is also widely used in the construction industry, as follows: 6. Interior Decoration: Quartz stone can be used as a material for floors and walls, providing beautiful and durable decorative effects. 7. Kitchen Countertops: Quartz is often used as a kitchen countertop material because of its wear-resistant, corrosion-resistant and easy-to-clean properties. 8. Bathroom Walls: Quartz's waterproof and moisture-proof properties make it suitable for bathroom wall paving. 9. Floor Paving: Quartz floor tiles are wear-resistant and corrosion-resistant, and are suitable for floor paving. 10. Commercial Buildings: Quartz is also widely used for interior and exterior decoration in commercial buildings such as shopping malls, hotels, and office buildings. 11. Public Facilities: Quartz is also used as a decorative material in public facilities such as schools, hospitals, and libraries. 12. Building exterior walls: Quartz, as an exterior wall decoration material, can resist external wear and corrosion and maintain long-term beauty. Different industrial applications of quartz have different requirements for the purity and quality of quartz ore, which requires us to sort quartz ore and separate useless minerals and harmful impurities. In addition, quartz ore sorting can also help reduce production costs, improve the comprehensive utilization rate of resources, reduce environmental pollution, and promote the sustainable development of the mining industry. When it comes to quartz sorting, we have to mention the color sorter and AI intelligent sorter launched by Mingde Optoelectronics Technology Co., Ltd. If it is used as a raw material for plates, customers generally have requirements for the color and whiteness of quartz ore, and need to remove iron-containing impurities and some other colors of gangue. Mingde color sorter can accurately separate the ore according to the color of the ore and improve the whiteness of quartz. The ore treated by the color sorter can even be directly ground to make plate materials. If it is used to make high-purity quartz sand, the customer's purity requirements for quartz ore are much higher than that of plate raw materials. At this time, we need to use our AI intelligent machine for processing. It can accurately analyze the sorted ore according to the surface characteristics of the extracted good ore, and accurately separate impurities, associated ores, and good ores. Well, today's introduction to different quartz ores is here. Mingde Optoelectronics Sorting Technology Co., Ltd. is a high-tech enterprise specializing in the research and development, design, manufacturing, sales and service of intelligent sorting, intelligent sorting robots and mining equipment for mining. We have been specializing in the production of sorting equipment for 10 years. If you are interested, please feel free to consult and we will see you another day.
  • A Comprehensive Introduction to Calcium Carbonate A Comprehensive Introduction to Calcium Carbonate Aug 31, 2024
    Calcium carbonate (CaCO3 for short) is an inorganic compound, commonly in the form of white solid powder or granules, and is one of the most abundant substances on earth. It is widely distributed in nature and is the main component of rocks, corals, pearls and the shells of many organisms. Calcium carbonate is chemically insoluble in water, but can release carbon dioxide gas in an acidic environment. Calcium carbonate can be divided into several types according to different production methods, particle size, morphology and uses. The focus of this discussion is to understand the difference between heavy calcium carbonate and light calcium carbonate, both of which are widely used in industrial applications. Heavy calcium carbonate Heavy calcium carbonate (GCC for short) is made by physical methods, usually mechanical crushing of natural minerals such as calcite, limestone, chalk, and shells. It is characterized by irregular particle shape, wide particle size distribution, and an average particle size of 5-10μm. Heavy calcium carbonate has a large bulk density, generally between 0.8-1.3g/cm³, and a low oil absorption value, generally 40-60mL/100g. Light calcium carbonate Light calcium carbonate (PCC for short) is produced by chemical precipitation. Its particles are regular in shape and can be regarded as monodisperse powders. The particle size distribution is narrow and the average particle size is generally 1-3μm. The bulk density of light calcium carbonate is small, generally between 0.5-0.7g/cm³, and the oil absorption value is high, generally 60-90mL/100g. Active calcium carbonate Active calcium carbonate is obtained by surface modification on the basis of ordinary calcium carbonate. It is hydrophobic and suitable for occasions with specific needs. Difference Production method: Heavy calcium carbonate is mainly produced by physical crushing, while light calcium carbonate is produced by chemical precipitation. Particle size and shape: The particle size and shape of heavy calcium carbonate are irregular, while the particle size and shape of light calcium carbonate are regular. Bulk density: The bulk density of heavy calcium carbonate is greater than that of light calcium carbonate. Oil absorption value: The oil absorption value of heavy calcium carbonate is lower, while the oil absorption value of light calcium carbonate is higher. Whiteness: The whiteness of light calcium carbonate is generally higher than that of heavy calcium carbonate. Surface modification: Activated calcium carbonate has been surface modified and is hydrophobic. Industrial application Calcium carbonate is widely used in industry. It can be summarized into the following major areas: 1. Rubber industry In the rubber industry, calcium carbonate is used as a filler and reinforcing agent in large quantities. It can effectively improve the hardness, wear resistance, tensile strength, tear resistance and aging resistance of rubber. In addition, calcium carbonate also helps to reduce production costs and increase the output of rubber products. 2. Plastic industry In the plastic industry, calcium carbonate also plays an important role. It can improve the hardness, wear resistance, heat resistance and weather resistance of plastics, while also reducing production costs and improving production efficiency. 3. Construction industry In the construction industry, calcium carbonate, as a raw material for cement, can significantly improve the compressive strength, flexural strength and durability of cement. It can also improve the construction performance of cement and improve the seismic performance of buildings. 4. Agricultural field In the agricultural field, calcium carbonate is used as a fertilizer and feed additive, which can improve the disease resistance of crops, promote root growth and soil acid-base balance, and also improve the yield and quality of crops. 5. Medical field In the medical field, calcium carbonate is used as a calcium supplement and antacid to treat diseases such as osteoporosis and rickets. It can also be used as a pharmaceutical excipient for the manufacture of tablets, capsules and injections. 6. Environmental protection field In the environmental protection field, calcium carbonate is used as an adsorbent and precipitant to remove harmful substances from water, reduce the hardness of water bodies, and improve water quality. It can also be used in waste gas treatment and soil remediation. 7. Cosmetic industry In the cosmetics industry, calcium carbonate is used as an additive for beauty products, which can improve skin texture, increase skin elasticity, and make the skin smoother and more delicate. 8. Other fields In addition to the above application fields, calcium carbonate is also widely used in ceramics, glass, pigments and other industries. It can improve the hardness, wear resistance, corrosion resistance and transparency of materials and other performance indicators. Processing Processing of light calcium carbonate Light calcium carbonate is produced by chemical reaction precipitation. Its production process mainly includes: Calcination stage: calcine the limestone raw material to generate calcium oxide and carbon dioxide. Digestion stage: put the calcined calcium oxide into a continuous digester and add water to digest it to obtain calcium hydroxide emulsion. Carbonization stage: react the calcium hydroxide emulsion with carbon dioxide to generate calcium carbonate precipitation. Dehydration and drying stage: dehydrate and dry the calcium carbonate precipitation to obtain dry calcium carbonate powder. Crushing and screening stage: crush and grade the dried calcium carbonate through crushing and screening equipment to obtain the product of the required fineness. Packaging stage: package the graded calcium carbonate powder to obtain the final product. Processing of heavy calcium carbonate The production process of heavy calcium carbonate generally includes the following steps: Crushing: use a crusher to coarsely crush raw materials such as calcite for subsequent fine grinding. Sorting: generally use hand selection, magnetic separation equipment or photoelectric separation equipment to remove impurities from the ore. CCD Sensor Based Ore Color Separator The color sorter and artificial intelligence sorting launched by Mingde Optoelectronics Technology Co., Ltd. have excellent performance in the sorting of heavy calcium carbonate. They can accurately compare the sorted materials according to the surface characteristics of the ore to achieve accurate sorting. AI Sorting Machine The heavy-duty sorting machine launched by the company can sort large-particle ore, which not only avoids over-crushing of the ore, but also increases the output of ore sorting. Heavy Duty AI Sorting Machine Fine grinding: Fine grinding is carried out by Raymond mill, pendulum mill, roller mill and other equipment to obtain fine limestone powder. Classification: The powder is graded by the classifier, and the powder that meets the particle size requirements is packaged and stored as a product, and the powder that does not meet the requirements is returned to the mill for re-grinding. Packaging and storage: The powder that meets the particle size requirements is packaged and stored to complete the entire production process. As a multifunctional and widely used material, calcium carbonate not only plays an important role in the traditional industrial field, but also shows new possibilities in emerging fields. With the development of science and technology, the application prospects of calcium carbonate will be broader.

leave a message

leave a message
If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.
Submit

home

products

whatsApp

contact