The Importance of Ore Pretreatment and Enrichment
Jul 13, 2024
Overview
Ore pretreatment and enrichment are key links in improving the utilization efficiency of mineral resources, especially in the current situation of increasingly tight global mineral resources, its importance is becoming more and more prominent. Pretreatment mainly includes crushing, grinding, screening, primary selection and other processes, aiming to improve the properties of ore and prepare for further beneficiation processes. Enrichment is to separate valuable minerals from ore by physical, chemical or biological methods to improve their grade and recovery rate.
Research progress of pretreatment technology
The development trend of pretreatment technology is to improve efficiency and reduce costs while paying attention to environmental protection and sustainability. The high-pressure roller mill pretreatment technology in the crushing stage improves the dissociation degree and grinding efficiency of the ore through high pressure and slow relative movement. The pre-waste technology in the primary selection stage refers to separating a part of waste rock or low-grade ore in the early stage of ore processing to reduce energy consumption and cost in subsequent processing. For example, by pre-selecting and discarding waste, the amount of ore entering the subsequent process can be reduced, saving a lot of subsequent process costs. At the same time, the pre-discarded waste tailings can be used as building aggregates and mine backfill without grinding, which has certain economic value and environmental value. Through pretreatment and pre-selection, the grade of ore can be improved, the amount of ore entering the mill can be reduced, and the tailings can be discarded in advance, thereby improving resource utilization and reducing energy consumption and environmental pollution.
Ore photoelectric sorting technology is an important branch of the current ore sorting field. It uses different physical properties of ore, such as color, texture, density, etc., to achieve effective ore sorting, which is of great significance for ore pretreatment.
Research progress of enrichment technology
Ore enrichment technology can increase the content of useful components in ore, thereby improving resource utilization. For example, through pretreatment and enrichment technology, the original low-grade ore can be made usable, the loss of mineral resources can be reduced, the import volume of mineral resources can be reduced, and the resource utilization of low-grade ore and stockpiled waste can be realized.
Ore enrichment can also reduce the processing cost and energy consumption of ore. For example, through pre-enrichment technology, the amount of subsequent grinding-flotation ore processing can be reduced, production costs can be reduced, and the economic benefits of the enterprise can be improved.
At the same time, ore enrichment technology also has extremely high environmental and social benefits. In terms of environmental effects, through scientific ore enrichment and ore deposit analysis, environmental pollution can be reduced, the ecological environment can be protected, resources can be recycled, and the service life of resources can be extended.
In terms of social benefits, the innovation of ore enrichment technology has promoted the upgrading of the mining industry. The development of intelligent mineral processing technology, such as intelligent mineral processing and intelligent monitoring, has improved the efficiency and accuracy of mineral processing, reduced labor costs, and promoted the transformation of the mining industry towards high efficiency and environmental protection. On the other hand, through ore enrichment, employment opportunities can be increased and the living standards of local residents can be improved.
Among them, photoelectric sorting is particularly representative in ore enrichment. By analyzing the surface characteristics of the ore to be processed, the ore is preliminarily sorted, thereby realizing pollution-free and efficient intelligent sorting. Photoelectric sorting has the advantages of high efficiency, low cost, and green environmental protection. It can save freight and reagent costs in the flotation link and extend the service life of the tailings pond. In addition, the mining boundary grade can be reduced and the amount of recoverable resources can be increased.
https://www.mdoresorting.com/mingde-ai-sorting-machine-separate-quartzmicafeldspar-from-pegmatite
Mingde Optoelectronics Technology Co., Ltd. is the first to introduce artificial intelligence and big data technology in the field of visible light photoelectric sorting, which broadens the adaptability of the machine and allows the photoelectric sorting machine to sort more types of ores. The machine uses a gigapascal camera to further improve the sorting accuracy of the machine, and the introduction of heavy-duty machines enables the machine to process 100 tons per hour. These pioneering measures make our machines more suitable for mining companies and make ore sorting better and faster.
Conclusion
In summary, ore pretreatment and enrichment technology plays an important role in improving the utilization efficiency of mineral resources, reducing production costs, and promoting environmental protection and sustainable development. With the continuous emergence and application of new technologies, pretreatment and enrichment technology will continue to develop in the direction of high efficiency, environmental protection, and low cost, and contribute to the sustainable development of the mining industry.