内页banner
AI intelligent sorting machine
  • What's an Ore Sorter: Introducing Mining's Advanced Sorting Technologies What's an Ore Sorter: Introducing Mining's Advanced Sorting Technologies Nov 11, 2023
    An ore sorter is a specialized machine used in the mining industry to separate valuable ore from impurities. Utilizing techniques such as sensors, cameras, and automated sorting algorithms, it efficiently identifies and separates different types of ore based on their physical and chemical properties. This technology significantly improves the efficiency of the mining process by reducing the amount of impurities that need processing and increasing the concentration of valuable ore. Ore sorters can ensure increased productivity and cost-effectiveness in the mining industry.   Types of Ore Sorters   1. Color Ore Sorter Utilizes color recognition technology to distinguish between different minerals based on their color properties. This sorter is effective in quickly identifying and separating ore particles.   2. AI Intelligent Sorting Machine Harnesses the power of artificial intelligence to analyze and categorize ore based on predefined parameters. This cutting-edge technology enhances the sorting accuracy and efficiency.   3. X-ray Intelligent Sorter  Employs X-ray technology to penetrate and analyze ore particles. This sorter is particularly useful in identifying and separating minerals with distinct X-ray absorption characteristics.   4. Mineral Sand Sorter Specialized for sorting mineral sands, this machine efficiently separates valuable minerals from the surrounding waste based on their unique physical properties.   5. Ultraviolet-ray Sorter Utilizes ultraviolet rays to detect and classify ore particles. This sorter is effective in identifying minerals that exhibit specific UV light interactions.   6. Infrared Sorter Operates by analyzing the infrared spectrum of ore particles, allowing for the separation of valuable minerals from waste based on their unique infrared signatures.   Working Principle of Optical Ore Sorter   Material Illumination Ore particles are illuminated using various light sources such as visible light, X-ray, ultraviolet-ray, or infrared light.   Optical Sensors Specialized sensors capture the reflected or transmitted light from the illuminated particles.   Spectral Analysis The optical system analyzes the spectrum of light interacting with each particle, identifying distinctive spectral patterns associated with different minerals.   Algorithmic Processing Advanced algorithms process the gathered optical data, making rapid decisions about the nature of each particle, distinguishing between valuable and waste materials.   Sorting Mechanism  Based on the analysis, a sorting mechanism is activated to separate valuable ore from waste material, ensuring efficient processing.   Real-time Operation The entire process occurs in real time, allowing for quick and precise separation of valuable minerals from non-valuable ones.   Advantages of Ore Sorting Technology   1. Increased Efficiency By separating valuable rocks from waste before entering the mill, ore sorters improve overall milling efficiency, reducing the need for energy-intensive grinding.   2. Environmental Benefits Reduced waste generation, including tailings, minimizes the environmental impact of mining operations. Lower water consumption contributes to sustainable mining practices.   3. Improved Product Quality  Ore sorting removes low-grade or contaminated rocks, resulting in higher average ore quality and increased yields of valuable metals in the final product.   4. Cost Savings Reduced milling costs are achieved by processing a higher average ore grade and less waste material, leading to significant savings for mining companies.   5. Increased Resource Utilization Ore sorting allows for the extraction of valuable metals from previously uneconomic ore deposits, enhancing resource utilization and overall production.
  • What is Ore Photoelectric Sorting What is Ore Photoelectric Sorting May 27, 2024
    Ore photoelectric sorting is an advanced mineral sorting technology. It uses photoelectric sensors to detect and identify minerals based on the photoelectric properties of minerals to achieve effective mineral sorting. This technology imitates the action of hand selection, and greatly improves the efficiency and accuracy of mineral processing through a combination of machinery and electricity. During the ore photoelectric sorting process, the photoelectric sensor emits a beam of light to the mineral. Minerals absorb the energy of light and reflect it. Different types of minerals have different spectral characteristics of absorption and reflection due to differences in their internal structures and compositions. Photoelectric sensors can accurately identify minerals by capturing these reflection spectral features. Ore photoelectric separation technology is widely used in the separation process of various ores, especially in the primary selection of pegmatite quartz vein-type ores. It can partially replace the traditional manual selection method, reduce labor intensity and improve production efficiency. In addition, ore photoelectric separation technology is also widely used in scenarios such as pre-disposal waste treatment, low-grade ore enrichment, and sorting of associated ores of multiple mineral types. Pre-disposing waste treatment is one of the important applications of ore photoelectric separation technology. In the process of ore mining and processing, there are often large amounts of gangue and low-grade ore. Through photoelectric separation technology, these useless or low-value minerals can be effectively separated, thereby reducing the amount of waste rock in subsequent treatment processes and reducing the overall cost of mineral processing. Low-grade ore enrichment is another important application area. Many ores cannot meet the requirements of economic mining due to their low grade. Through ore photoelectric separation technology, the useful components in these low-grade ores can be effectively enriched and the grade of the ores can be improved, making them economically valuable for mining. Low-grade ore enrichment is another important application area. Many ores cannot meet the requirements of economic mining due to their low grade. Through ore photoelectric separation technology, the useful components in these low-grade ores can be effectively enriched and the grade of the ores can be improved, making them economically valuable for mining. The sorting of multi-mineral associated ores is also an important application scenario of ore photoelectric separation technology. In ores associated with multiple mineral types, the property differences between different minerals may increase the difficulty of mineral processing. Through photoelectric separation technology, different minerals can be effectively separated, reducing the difficulty of mineral processing and improving the efficiency of mineral processing. After years of hard research, Mingde Optoelectronics Technology Co., Ltd. not only developed a traditional photoelectric color sorter, but also launched an advanced AI photoelectric sorter.MIINGDE AI intelligent sorting machine takes the lead in using artificial intelligence means such as deep convolutional neural network (CNN) to analyze and process material images in the field of visible light photoelectric sorting, and automatically extracts multi-dimensional features of materials to establish a database through CNN local connection, weight sharing, multi-convolutional kernel and other methods in the training process, and the sorting effect is far better than that of traditional photoelectric sorting. https://www.mdoresorting.com/wet-intelligent-minerals-separator-ore-sorting-machine-leading-manufacturer-of-china Ore photoelectric separation technology plays an important role in the field of mineral processing due to its high efficiency and accuracy. With the continuous advancement of science and technology and the continuous innovation of photoelectric technology, it is believed that ore photoelectric separation technology will be more widely used and developed in the future.
  • Comprehensive Utilization of Coal and Coal Gangue Comprehensive Utilization of Coal and Coal Gangue Aug 03, 2024
    Coal and gangue are two different substances produced during coal mining and processing. Coal is a fossil fuel that is mainly composed of elements such as carbon, hydrogen, oxygen, nitrogen, sulfur and phosphorus, and has a high energy density and calorific value of combustion. Coal is usually black in color, has a relatively compact texture and contains fewer impurities. In contrast, gangue is a solid waste produced during coal mining and selection, which contains a lower carbon content and a higher ash content. It is usually gray or dark gray and contains more impurities. The density of gangue is lower than that of coal, so it weighs more in the same volume. In addition, the hardness of gangue is also higher than that of coal, and it is not easy to be broken manually. Gangue, on the other hand, was often regarded as waste disposal in the past due to its lower energy value and higher environmental pollution potential. However, with the improvement of comprehensive resource utilization and environmental protection awareness, the comprehensive utilization technology of gangue has been developed, and its application in the production of building materials, filling of goafs, land reclamation, and production of chemical products has gradually increased. Taking the field of building materials as an example, coal gangue has the following main applications: Cement production: coal gangue can be used as a raw material for the production of ordinary silicate cement, special cement and clinker-free cement, and can partially or completely replace clay to prepare cement raw materials. Production of sintered bricks: coal gangue sintered bricks are of good quality and uniform color, and are a commonly used building material. Production of lightweight aggregate: Lightweight aggregate is a porous aggregate used to reduce the relative density of concrete. Coal gangue can be used to produce such materials. Production of coal gangue asbestos: Coal gangue asbestos made from coal gangue and lime as raw materials and melted at high temperature is a building material. Production of blocks: coal gangue can also be used to produce building materials such as blocks. Production of other building materials: According to the mineral composition of coal gangue, it can be used as a siliceous raw material or an aluminum raw material, and is used in the production of many sintered ceramic (porcelain) building materials. Production of chemical products: Gangue can be used to produce chemical products such as crystalline aluminum chloride, water glass, and ammonium sulfate. Backfill and reclamation: Gangue can be used to fill coal mining subsidence areas and open-pit mines for land reclamation. In addition, gangue has the following convenient applications: Conversion of gangue into organic fertilizer: Through specific biotechnology treatment, gangue can be converted into biological organic fertilizer to improve the productivity of soil ecosystems. This technology not only realizes the resource utilization of gangue, but also helps to improve soil quality and promote sustainable agricultural development. High-value utilization of gangue: After grinding, pulping, grading and other process treatments, gangue can be used to produce high-value-added products such as catalysts, pigments, and fillers. These products are widely used in many fields such as plastics, rubber, and coatings, realizing the resource utilization and recycling of gangue. Gangue overburden isolation grouting filling technology: This is a technology that injects gangue as filling material into the overburden separation zone through ground drilling, which effectively prevents and slows down ground subsidence. This technology fundamentally solves the problem of gangue treatment in coal mines, saves treatment costs, and provides a new solution for gangue disposal. In order to improve the comprehensive profit efficiency of coal and gangue, the separation of coal and gangue is particularly important as an important step in the coal processing process. The following are some current methods for separating coal and gangue: 1. Vibrating screen gangue separation system: By establishing a vibrating screen gangue separation system on the underground centralized belt, effective separation of coal and gangue is achieved. This system can realize the direct loading and lifting of gangue, reduce the main shaft lifting and gangue washing in the coal washing plant, reduce the ash content of washed coal, and improve the recovery rate of raw coal. The working principle of this system is based on vibration mechanics and screening principles. In this process, the vibrating screen is driven by a motor to make the screen body vibrate at high frequency, and the material jumps on the screen surface. Due to the different physical properties of coal and gangue, their motion states on the vibrating screen surface are also different, resulting in the effective separation of the two. Specifically, when the screen surface of the vibrating screen vibrates, large particles of material will be thrown above the screen surface due to inertia, while small particles of material will fall below through the screen. In this way, materials of different particle sizes are separated. The design of the vibrating screen usually takes into account the differences in the characteristics of coal and gangue, including their density, humidity and shape, to ensure efficient sorting. The vibrating screen gangue sorting system is mainly composed of screen box, screen, vibrator, vibration damping spring and other components. There are multiple layers of screen inside the screen box, and each layer of screen corresponds to different particle size requirements. The vibrator generates vibration force, causing the screen box and screen to vibrate at high frequency, thereby achieving material separation. The vibration damping spring is used to absorb the vibration generated by the vibrating screen during operation and reduce the transmission of vibration to the ground or other equipment. The operation process usually includes three steps: feeding, screening and discharging. First, the raw coal and gangue mixture is fed into the feeding port of the vibrating screen. Then, the vibrating screen starts working and the material is screened on the vibrating screen surface. Finally, the screened coal and gangue are discharged from both sides of the screen respectively to complete the sorting process. In practical applications, the vibrating screen gangue sorting system may be optimized and improved according to the specific conditions of different coal mines to improve sorting efficiency and reduce energy consumption. For example, the vibration frequency and amplitude of the vibrating screen can be adjusted to adapt to different material characteristics, or the screening accuracy can be improved by improving the design of the screen. In addition, the introduction of intelligent control systems can further improve the automation and stability of the system. 2. Gangue sorting system based on X-ray and machine vision: Use X-ray and machine vision technology to identify coal and gangue, calculate the thickness value of coal and gangue through image processing algorithm, and fuse the thickness of coal and gangue identified by visual images with X-ray attenuation images to obtain recognition decision information.   The application of X-ray and machine vision technology in coal gangue sorting mainly involves the following steps: Use of imaging system: Use X-ray imaging system to scan coal and coal gangue to obtain the internal structure and composition information of the material. This information is usually manifested as different materials absorb X-rays to different degrees, thus forming contrast in imaging. Image recognition and analysis: Through machine vision technology, the images obtained by the X-ray imaging system are processed and analyzed. Deep learning algorithms are used to train models to automatically identify the characteristics of coal and coal gangue, such as color, density, shape, texture, etc. Automated sorting: After identifying coal and coal gangue, the control system will guide the actuator, such as high-pressure wind or robotic arm, to separate the gangue from the coal. This process can achieve high-efficiency and high-precision sorting, reduce labor costs, and improve sorting quality. Intelligent system: Modern gangue sorting systems not only rely on hardware equipment, but also integrate data analysis and artificial intelligence algorithms, so that the system has self-learning capabilities, can adjust the sorting strategy according to different coal quality characteristics and environmental conditions, and realize unattended operation. The combination of these technologies represents the advanced level in the field of coal sorting, which helps to improve resource recovery and reduce environmental pollution. 3. Photoelectric sorting system: Gangue photoelectric sorting technology is a modern method of sorting coal and gangue using photoelectric sensors and image processing technology. This technology can achieve rapid and accurate identification of coal and gangue, thereby improving the quality of coal and the comprehensive utilization rate of resources. Photoelectric sorting systems usually include components such as light sources, detectors, image processing units and control systems. By scanning the materials on the conveyor belt, the system can detect the differences in spectral characteristics of different substances and classify them accordingly.   The latest research and applications show that gangue photoelectric sorting technology is developing towards intelligence and high efficiency. For example, a study proposed an intelligent gangue sorting system based on deep reinforcement learning, which can achieve more than 95% gangue identification accuracy and more than 90% sorting efficiency. In addition, there are studies on the key common technologies of multi-arm gangue intelligent sorting robots, which have achieved the stable grasping of dynamic gangue transmitted at high speed by the manipulator, improving the sorting efficiency and the collaborative working ability of the system. The advantage of the optoelectronic sorting technology of gangue is that it can realize non-contact sorting, reduce damage to materials, and reduce dust and noise pollution. In addition, the intelligent sorting system can self-learn and optimize the sorting strategy to improve the accuracy and efficiency of sorting. The application of these technologies helps to achieve efficient utilization of coal resources and environmental protection, which is in line with the development trend of green mine construction. In addition, the application of optoelectronic sorting technology can also reduce equipment failure rate, reduce management costs, optimize process flow, and improve clean coal recovery rate, which are directly reflected in the improvement of production efficiency. The combination of intelligent lighting and personnel positioning management platform further enhances the intelligence level of coal preparation plants and improves the standards of safe production. The AI intelligent sorting machine launched by Anhui Mingde Optoelectronics Technology Co., Ltd. uses deep learning and machine vision technology to automatically identify and sort coal gangue. This technology can significantly improve sorting efficiency, reduce labor costs, and reduce environmental pollution.
  • How to Choose An Ore Color Sorter? How to Choose An Ore Color Sorter? Aug 10, 2024
    The ore color sorter uses the principle of photoelectric sorting and the difference in the optical properties of the material for fine sorting. It can process a large amount of material in a short time, and has high sorting accuracy, which helps to improve the grade of the ore. CCD Sensor Based Ore Color Sorter   The color sorting process does not require the addition of chemical agents, which reduces environmental pollution and energy consumption, and meets the environmental protection requirements of modern mining. The ore color sorter with a high degree of intelligence can adapt to the changing properties of the ore, realize remote control and automatic operation, and reduce labor costs and downtime. With the development of science and technology, the technical performance of ore color sorters has been continuously improved, and more sensing technologies have been integrated, such as near-infrared spectroscopy analysis and thermal imaging, to achieve a more comprehensive and in-depth ore quality judgment. Since the ore color sorter has so many advantages, how should we choose a suitable color sorter? Generally speaking, when choosing an ore color sorter, you need to consider the following key factors: Determine the needs: Determine the appropriate type of color sorter based on your production requirements, sorting effect, applicable particle size range, sorting type, equipment stability, service life and budget. Technical performance: Choose a color sorter with advanced technology and stable performance, including the stability of the optical system, the advancement of the image processing algorithm, and the durability of the equipment. Brand and manufacturer reputation: Consider the brand's market reputation and after-sales service system, and choose manufacturers that can provide long-term technical support and quick response services. Equipment adaptability: Choose a color sorter that can adapt to different working environments and material characteristics, so as to maintain high efficiency and high precision under changing production conditions. Cost-effectiveness: Under the premise of meeting technical and performance requirements, choose a cost-effective color sorter to ensure the return on investment. Field investigation: If possible, go to the manufacturer's or existing users' site for an inspection and see the actual working effect of the color sorter with your own eyes, which will help verify the performance of the equipment and the manufacturer's service quality. Customization capability: Consider whether the manufacturer can provide customized services to meet specific material sorting needs.   Color Sorter After considering these factors, we will begin to understand the categories of ore color sorters. The main classification of ore color sorters can be divided according to different technical and application characteristics. The following are some common classification methods: Classification by technology: Traditional photoelectric color sorter: Use basic photoelectric sensors for color detection and sorting. CCD technology color sorter: Use charge coupled device (CCD) as an image sensor to provide higher resolution color recognition. Infrared technology color sorter: Use infrared to detect the difference in thermal radiation of ore for sorting. X-ray color sorter: Use X-rays to penetrate the ore and sort according to density differences. Classification by light source: LED light source color sorter: Use light-emitting diodes (LEDs) as more energy-saving and long-life light sources. Microwave light source color sorter: Use microwaves to excite ore to emit light for special types of color sorting. X-ray color sorter: Use X-rays as a light source, suitable for sorting occasions that require penetration. Classification by rack: Waterfall: The material flow is similar to a waterfall, suitable for continuous operation. Crawler type: the material moves on the crawler, which is suitable for sorting a variety of materials. Classification by material: Special color sorter: a color sorter designed for a specific type of ore or material, such as rice color sorter, grain color sorter, tea color sorter, etc.   Color Sorter These classifications reflect the diversity of ore color sorters in different technologies and application scenarios. We can choose the appropriate color sorter model according to the actual ore characteristics and processing requirements. The ore color sorter independently developed by Hefei Mingde Optoelectronics Technology Co., Ltd. has the following advantages: 1. The independently developed software system and closed whole machine structure, the main internal components are all imported components, which can adapt to the requirements of high dust, high pollution, high corrosion and other environments in the industrial and mining industries, with a wider range of applications and longer life. 2. The 32-bit true color image processing method is adopted, and mathematical morphology is applied based on the HSI color space to achieve better sorting effect and improve the flexibility and sorting ability of the color sorter operation. 3. High-precision full-color linear array CCD sensor technology can detect subtle color differences of about 0.02mm; according to the different characteristics of the ore, different processing methods are used to ensure the accurate identification of ore and other selected materials. 4. The device has high output and high precision. The output of some models has exceeded 40 tons/hour, which is 4-5 times that of similar manufacturers in China. It is suitable for large and medium-sized mining companies to meet the requirements of high output and high precision in mineral processing. 5. The range of selectable materials is large, and the size of the sorted materials ranges from 16 mesh to 4 cm, which avoids the repeated crushing adopted by users for the use of color sorting machines, reduces breakage and reduces resource waste. 6. Double-layer crawler flexible material conveying, higher color sorting accuracy and low carry-out ratio. 7. The first manufacturer to develop and launch large and small particles at the same time, one color sorter can meet the requirements of simultaneous sorting of materials with large specifications. 8. The vibrating feeding part and the main part of the equipment adopt a split structure to avoid the influence of vibration generated during the feeding process on the host, making the equipment run more stable. 9. Unique modular design, automatic dust removal and automatic spraying combined with self-maintenance function ensures the continuous and long-term working state of the equipment. 10. The parts of the machine body that contact the material are equipped with a protective layer, which has the characteristics of wear resistance, corrosion resistance, and easy replacement, ensuring the long service life of the whole machine. At the same time, according to customer needs, the company can provide specific machine customization services. In addition, through years of dedicated research, the company has introduced AI technology and big data technology in the field of photoelectric sorting. The self-developed AI intelligent sorting machine has higher sorting accuracy and can sort more types of ores. In addition, the after-sales service provided by the company is also very complete. After the customer purchases the machine, we will arrange special technicians to install and debug locally, provide a full set of operation training for customer employees, ensure the delivery and normal use of the machine, and let customers rest assured. In general, when choosing a color sorter, paying attention to the strength and after-sales service of the color sorter manufacturer is crucial to ensure the efficient operation of the equipment and return on investment. When choosing a color sorter, priority should be given to manufacturers with a good market reputation, strong technical background and a complete after-sales service system.
  • Industrial Use and Sorting of Gypsum Industrial Use and Sorting of Gypsum Aug 17, 2024
    Gypsum is a non-metallic mineral with calcium sulfate as the main component. It is usually white or colorless transparent crystals and has a wide range of application value. The formation of gypsum is closely related to geological action and is usually formed in a sedimentary environment or hydrothermal activity. In a sedimentary environment, gypsum can be precipitated from calcium sulfate in seawater or lake water; in hydrothermal activity, gypsum can be formed by cooling and crystallizing hydrothermal fluid containing calcium sulfate underground. Formation process According to the genesis and mineral composition of gypsum, it can be divided into sedimentary gypsum, hydrothermal gypsum and replacement gypsum. Among them, sedimentary gypsum is the most common type, with layered, quasi-layered and lens-shaped forms. Gypsum is widely distributed around the world, especially in Asia, Europe and North America, where reserves and production are relatively concentrated. Asia is one of the main distribution areas of gypsum, especially China, Iran and Thailand, which have more gypsum resources. China has abundant gypsum resources, which are distributed in many provinces across the country. Among them, Shandong Province has particularly outstanding gypsum ore reserves, accounting for 65% of the country's total reserves. Europe is also an important distribution area for gypsum mines. France, Germany, Spain and other countries have a large number of gypsum mine resources. Among these countries, France's gypsum mine production ranks among the top in Europe. North America, especially the United States, is one of the world's largest gypsum producers. The gypsum deposits in the United States are distributed in 22 states, with a total of 69 mines, and the largest production area is Fort Dodge, Iowa. In addition to the above-mentioned regions, countries such as Australia, India and the United Kingdom also have a certain scale of gypsum mine resources. The main component of gypsum ore is calcium sulfate (CaSO4), which usually exists in the form of dihydrate, that is, gypsum (CaSO4·2H2O). Gypsum belongs to the orthorhombic crystal system, and the crystals are plate-shaped or fibrous. The chemical properties of gypsum are stable and it is not easy to react chemically with other substances. However, at high temperatures, gypsum can react with alumina to form calcium aluminum silicate and other compounds. In addition, gypsum can react with acidic substances such as hydrochloric acid to produce sulfur dioxide gas and water. The solubility of gypsum decreases with increasing temperature. It has a low solubility in water, but can be dissolved by acids, ammonium salts, sodium thiosulfate and glycerol. When gypsum is heated at different temperatures, there are three stages of expelling crystal water: 105~180℃, first one water molecule is expelled, and then half of the water molecule is immediately expelled, turning into calcined gypsum, also known as gypsum or semi-hydrated gypsum. 200~220℃, the remaining half of the water molecule is expelled and turned into type III anhydrite. At about 350℃, it turns into type II gypsum Ca[SO4]. At 1120℃, it further turns into type I anhydrite. Melting temperature is 1450℃. The microporous structure and heating dehydration of gypsum and its products make it have excellent sound insulation, heat insulation and fire resistance. As a multifunctional mineral, gypsum is widely used in construction, medicine, agriculture, chemical industry and many other fields. Gypsum plays an important role in the medical, construction, sculpture and other industries with its excellent properties, such as good plasticity, stability, high thermal stability and chemical stability. In the field of construction, gypsum is mainly used for indoor partitions, ceilings, wall materials, etc. Gypsum board is widely used because of its light weight, high strength and easy processing. It can be used as a partition wall, interior wall material, and can also be used to make furniture. In addition, gypsum blocks are also a lightweight and environmentally friendly building material suitable for partition walls and interior walls. In the medical field, gypsum is used to make plaster bandages, fixtures, etc. The fast coagulation and hardening and fast strength growth of gypsum make it an ideal material for post-fracture fixation. In the chemical industry, gypsum can be used as a raw material for the production of sulfuric acid and cement, and can also be used as a quick-acting nitrogen fertilizer in fertilizer production. In addition, gypsum can also be used as a chemical filler in the industrial production of plastics, rubber, coatings, etc. In the agricultural field, medium gypsum can be used as a soil conditioner to adjust the pH of the soil and improve the fertility of the soil. Gypsum is also used in the field of sculpture, and artists use the plasticity of gypsum to create various works of art. In food processing, gypsum powder can be used as a food additive for tofu making, tablet production, etc. With the advancement of science and technology and in-depth research on the properties of gypsum, the application field of gypsum is still expanding. It is particularly noteworthy that as a renewable resource, the use of gypsum in building materials increasingly emphasizes environmental protection and sustainability. For example, industrial by-product gypsum such as desulfurized gypsum and phosphogypsum are reused in building materials, which not only reduces the generation of waste, but also promotes the recycling of resources. There are two main methods of mining gypsum mines: open-pit mining and underground mining. Open-pit mining is suitable for shallow and large-scale deposits. The ore is mined by stripping the covering and mining operations. Underground mining is suitable for deep and small-scale deposits. The ore is mined by opening up tunnels and mining operations. The processing of gypsum mines mainly includes crushing, beneficiation, grinding, calcination and other processes. Crushing is to break the raw ore into small pieces. Crusher such as jaw crusher is used to break the ore into small pieces for subsequent processing. The sorting process of gypsum ore includes many methods: Manual sorting: suitable for small-scale and low-production mining enterprises. Workers sort according to the color and shape of the ore. Heavy medium separation: sorting according to the density difference between the ore particles, suitable for the sorting of coarse-grained gypsum ore. Flotation method: sorting by using the difference in physical and chemical properties between gypsum ore and impurities. By adding flotation agent, gypsum ore floats to the surface of the slurry under the action of bubbles and is separated from impurities. Photoelectric separation: sorting by using the difference in optical properties between ore and impurities. Useful ore and waste rock are separated by photoelectric separator. This method has the advantages of high efficiency and precision, and is suitable for large-scale and high-precision occasions. CCD Sensor Based Ore Color Sorting Machine Mingde Optoelectronics Co., Ltd. was established in 2014. For more than 10 years, it has been professionally developing, designing, manufacturing and selling intelligent sorting equipment for mining. The ore color sorters and artificial intelligence sorters it produces can accurately sort gypsum ore. AI Sorting Machine Among them, the AI ore sorter introduces artificial intelligence technology and big data technology in the field of optoelectronics. It accurately extracts the surface features of ore and impurities such as texture, gloss, shape, color, etc., and forms a model through deep learning. In the subsequent sorting process, the sorted ore is compared and identified, instructions are issued, and pneumatic force is used for precise separation. Practice has proved that the sorting effect of AI intelligent sorting machine is far better than that of traditional optoelectronic ore sorting machine. Heavy Duty AI Ore Sorting Machine Grinding is a step to further reduce the particle size of gypsum to meet the needs of subsequent processing or application. It is usually carried out using equipment such as ball mills. Calcination is to remove moisture and impurities in gypsum and improve its purity and stability. The calcination process includes dry and wet methods. The appropriate process can be selected according to different needs and product requirements. With the advancement of science and technology, especially the development of optoelectronic mineral processing technology, the sorting efficiency and accuracy of gypsum ore have been significantly improved. As a versatile building material, gypsum plays an indispensable role in many fields of modern society. From construction to medicine, to chemical industry and agriculture, the application of gypsum shows its diversity and practicality. With the deepening of gypsum research, the application of gypsum may be more extensive in the future, and it will also pay more attention to environmental protection and sustainability.
  • Industrial Application and Sorting Method of Brucite Industrial Application and Sorting Method of Brucite Aug 20, 2024
    I. Overview Today we will learn about brucite. Brucite is an important non-metallic mineral, belonging to the hydroxide ore. Its main component is magnesium hydroxide (Mg(OH)2), which is one of the minerals with a high magnesium content in nature. II. Morphology and Characteristics Brucite is usually a flake or fibrous aggregate, mostly white or light green, colorless and transparent, with glass luster and pearl luster. Its hardness is about 2.5-3, and its relative density is in the range of 2.369-2.39. The chemical properties of brucite are stable, it is easily soluble in hydrochloric acid, it can release water vapor when heated, and it can be converted into other forms of magnesium compounds under certain conditions. III. World Distribution The distribution of brucite in the world is not uniform, mainly concentrated in the following countries and regions: China: China is one of the countries with the richest brucite resources in the world, especially in Fengcheng, Liaoning, Ningqiang, Shaanxi, Ji'an, Jilin, Qilian Mountains, Qinghai, Shimian, Sichuan, Xixia, Henan, and Kuandian, Liaoning. Among them, Liaoning Fengcheng has the highest reserves, reaching 10 million tons, Shaanxi Ningqiang area has proven brucite reserves of 7.8 million tons, and Jilin Ji'an has proven brucite reserves of 2 million tons. Russia: Russia is also a country with abundant brucite resources, especially in the Kulidur area in the south of Xiaoxing'anling, where there are large-scale brucite deposits. Canada: Canada's brucite resources are mainly distributed in Ontario, Quebec and other places. The United States: The brucite resources in the United States are mainly distributed in Nevada, Texas and other places. North Korea: North Korea's brucite resources are mainly distributed in the Bokionton area. Norway: Norway's brucite resources are also distributed to a certain extent. IV. Market Application Brucite has a wide range of applications in many fields due to its unique physical and chemical properties, especially in refractory materials, environmental protection, chemical industry and other fields, showing great potential. In the field of refractory materials, brucite is widely used in the production of refractory materials such as refractory bricks, refractory coatings and lining materials due to its high magnesium content and good refractoriness. Especially in the steel industry, heavy-burned magnesia (brucite) made of brucite is widely used due to its high density (>3.55 g/cm³) and high refractoriness (>2800°C). In the field of environmental protection, brucite can be used for wastewater treatment, especially for the removal of heavy metal ions such as nickel, copper, cadmium, manganese and chromium. In addition, it can also be used as a neutralizing agent for acidic wastewater, and there is a great demand for treating soil contaminated by acid rain and adjusting soil pH. Brucite can also be used as a flue gas desulfurization agent to reduce the harm of high mercury and high sulfur fuels to the environment. In the field of chemical products, brucite can be used as filler and coating for chemical products, especially in the papermaking industry, brucite can be used as filler to improve the whiteness and quality of paper. In addition, brucite also has important applications in the preparation of magnesium chloride, magnesium oxide, etc. In the field of flame retardant materials, brucite is used as a flame retardant in the plastics industry due to its halogen-free, non-toxic and highly efficient flame retardant properties. It can effectively absorb heat, reduce the temperature of the combustion system, and slow down the burning rate of the material. The flame retardant mechanism of brucite is that it decomposes and releases crystal water at high temperature, absorbs heat, and reduces the concentration of combustible gas, thereby playing a flame retardant role. In other fields, brucite is also widely used.Brucite is also used to prepare various composite materials, such as composite materials combined with silicon, phosphorus, nitrogen and other elements to improve their performance. In agriculture, brucite can be used to treat beet juice as a decolorizer. In addition, brucite can also be used as a catalyst carrier and catalyst to play a role in chemical reactions. V. Purity and Quality Determination of Brucite As an important industrial mineral, its purity and quality are directly related to the performance and quality of the final product. High-purity brucite can not only improve the performance and quality of the product, but also reduce production costs and improve the market competitiveness of enterprises. Therefore, ensuring the purity and quality of brucite is an important prerequisite for the development of the industry. Generally, brucite can be divided into three grades according to the content of magnesium oxide, as shown in the figure below: VI. Sorting Method The sorting technology of brucite has experienced a development process from traditional hand sorting to mechanical sorting, and then to modern photoelectric sorting and artificial intelligence sorting. In the early days, due to the similar physical and chemical properties of brucite and associated minerals, traditional physical methods were difficult to achieve effective separation. Subsequently, the development of photoelectric mineral processing technology provided new possibilities for the sorting of brucite. By identifying the surface features of the ore such as color and texture, automatic sorting can be achieved to a certain extent. In recent years, with the development of artificial intelligence technology, intelligent sorting equipment can achieve more accurate sorting by learning and identifying the characteristics of the ore. At present, the sorting technology of brucite mainly includes the following aspects: Gravity separation and magnetic separation technology: physical separation is carried out by using the density and magnetic difference between brucite and impurities. Chemical purification method: synthesize brucite through chemical reaction, remove impurities and improve purity. Flotation separation technology: By adding specific adjusters, such as PCE-11 and PDP to strengthen the DDA system, the floatability difference between brucite and serpentine in the flotation process can be expanded to achieve effective separation. Intelligent identification and sorting technology: By introducing advanced image recognition technology and artificial intelligence algorithms, brucite can be efficiently and accurately graded, impurities can be removed, and the quality of the original ore can be improved. For example, the intelligent sorting equipment developed by Mingde Optoelectronics Technology Co., Ltd. can perform multi-dimensional feature recognition and sorting of ores in different size ranges through optoelectronic systems and artificial intelligence algorithms, greatly improving the accuracy and efficiency of sorting. AI Intelligent Mineral Sorting Machine Since its establishment in 2014, Hefei Mingde Optoelectronics Technology Co., Ltd. has been professionally researching, producing and selling mining optoelectronic sorting equipment. The staff went deep into mines across China to investigate the difficulties and pain points of mining sorting problems, and developed a batch of precise sorting optoelectronic ore sorting equipment. Among them, the AI ​​intelligent sorting machine has high sorting accuracy and large sorting volume, which is very popular in the market and has significant effects on the sorting application of brucite. In general, brucite sorting technology is developing rapidly towards higher efficiency, lower cost and more environmental protection. With the continuous improvement and promotion of technology, brucite is expected to play a greater role in industrial applications in the future.
  • Market Application and Processing of Mica Market Application and Processing of Mica Aug 23, 2024
    I. Overview Mica is an important industrial mineral with a layered structure and good physical and chemical properties, so it has a wide range of applications in many fields. There are many types of mica, including but not limited to muscovite, phlogopite, biotite, lepidolite, etc. Each type of mica has its own specific composition and properties, which determines their application in different fields. Mica belongs to the layered structure of the monoclinic system, and its chemical formula is KAl2(AlSi3O10)(OH)2. Its hardness is generally between 2.5-4, and its specific gravity is about 2.77-2.88g/cm³. Mica crystals are usually plate-shaped pseudo-hexagonal, transparent to translucent, with a very complete set of bottom cleavage, so they can be easily peeled into thin sheets. These thin sheets have significant elasticity and toughness, and can be bent to a certain extent without breaking easily. Mica minerals can be divided into three subgroups according to chemical composition and optical characteristics: muscovite subgroup, biotite-phlogopite subgroup and lepidolite subgroup. The color can range from colorless to white, and sometimes it can appear light yellow, light green or light red. Its luster is similar to glass or pearl, so it will have a similar effect when observed at a certain angle. In addition, mica has strong insulation and heat resistance, and can maintain stable performance under high temperature conditions, which makes it particularly important in the electronics and electrical industries. The main chemical components of mica include aluminum oxide (Al2O3), iron oxide (Fe2O3), potassium oxide (K2O), etc. In addition to these main elements, mica may also contain trace amounts of sodium, magnesium, iron, lithium, etc., as well as water and oxides. These chemical components give mica different physical properties, such as electrical insulation, heat resistance and chemical stability. II. Global distribution of mica The global distribution of mica mineral resources is relatively wide, and the main production areas include India: India is rich in mica mineral resources, especially in Bihar and Andhra Pradesh, where there are a large number of mica mines. Russia: Russia's mica resources are also very rich, especially in Siberia. China: China's mica resources are mainly distributed in Xinjiang, Sichuan, Inner Mongolia and other provinces, especially in Xinjiang Altai, Sichuan Danba and Inner Mongolia Tuguiwula. Madagascar: This African island country is also an important producer of mica, especially in its northern region. Brazil: Brazil's mica resources are mainly concentrated in the southeastern region. Argentina: Argentina also has certain mica mineral resources. III. Market Application The market application of mica is very wide, including but not limited to the electronics industry, building materials, automobile manufacturing, power equipment, cosmetics, fireproof materials, etc. The application of mica in these fields not only reflects its excellent physical and chemical properties, but also reflects its irreplaceable importance in modern industry and daily life. Electronic Industry In the electronics industry, mica is used as a high-frequency insulation material, especially in high-frequency circuits, where mica has a small dielectric loss and can effectively reduce signal loss. In addition, mica is also used to make printed circuit boards because it can withstand high temperatures without losing its insulation properties. Building Materials In the construction industry, mica is used as an efficient thermal insulation material, which can prevent energy loss caused by the temperature difference between the inside and outside of the building. Mica also provides additional fire protection because its layered structure can prevent the spread of flames. Automotive Manufacturing In automotive manufacturing, mica is used as part of the body material to improve the heat resistance and safety of the vehicle. Mica can also be used in brake pads to improve its heat resistance and reduce the heat generated by friction. Power Equipment In power equipment, mica is used as an insulating material, especially for transformers, cables and other power equipment. Mica's high heat resistance and chemical stability make it ideal for these applications. Cosmetics In the cosmetics industry, mica is used as a brightening ingredient to make products look more shiny. In addition, mica's flaky structure helps fill in skin lines and make the skin look smoother. Fireproof Materials In fireproof materials, mica is used as an effective thermal insulation and fire-resistant material. Mica's multi-layered structure can reflect heat back, thereby reducing the damage caused by fire. Ⅳ. Processing Process Complete mica processing involves a series of process flows from the mining, sorting, crushing, grinding of raw ore to the final mica products. This time we will briefly introduce the three links of crushing, sorting and grinding. Crushing The crushing of mica ore is an important link in the mica processing process, which directly affects the subsequent processing and application performance of mica. At present, the main crushing equipment on the market includes jaw crusher, roller crusher, cone crusher and other types, each of which has its specific application scenarios and advantages. The roller crusher plays an important role in the crushing of mica ore. It has the advantages of high crushing ratio, strong processing capacity, low maintenance cost, and precise control of finished product particle shape. By adjusting the roller spacing and crushing pressure, the discharge particle size can be effectively controlled to ensure the integrity of the mica sheet, which is conducive to improving the quality and application value of the product. Jaw crushers are often used in the crushing of lithium mica ore, especially for the initial crushing of large pieces of raw ore, crushing the ore to a suitable feed fineness, creating conditions for subsequent processing. Water jet mill crushing technology is a new type of mica crushing method. It cuts and crushes the material through high-speed jet water flow. It has the advantages of high crushing fineness, high precision, less dust generation and less wear on equipment. The crusher for mica production with a multi-stage crushing structure prepares for later processing through multi-angle crushing to improve work efficiency. The crushing process of mica ore usually includes the mining and screening of raw ore, crushing, screening and grading, and air separation. The specific process includes the use of a jaw crusher for primary crushing, followed by secondary crushing with a roller crusher, and finally a particle size screening by a screening machine to achieve the required particle size distribution. What needs to be paid attention to during the crushing process is the selection and parameter setting of the crushing equipment, as well as the screening and separation effect after crushing. For example, although the water jet mill crushing mica technology has many advantages, it also has the problems of high equipment cost and narrow crushing particle size range, and the mica mineral needs to be pretreated. Sorting The sorting technology of mica is a key link in the processing of mica ore, which is directly related to the quality and output of mica products. The methods of mica sorting mainly include hand sorting, gravity sorting, magnetic separation, flotation and photoelectric sorting. Hand sorting is the oldest and most direct sorting method, which is suitable for the sorting of large mica. Workers can directly pick out the separated mica on the mining face or ore pile. Gravity separation is a method of sorting using the difference in mineral density, which is suitable for coarse-grained mica. Commonly used gravity separation equipment includes jigs, shaking tables and spiral chutes. Magnetic separation is a method of sorting using the difference in mineral magnetic properties, which is mainly used to sort mica containing iron impurities. Magnetic separation equipment mainly includes dry magnetic separators and wet magnetic separators. Flotation is a method of sorting using the difference in physical and chemical properties of the mineral surface. It is currently the most widely used sorting method and is suitable for fine-grained mica. During the flotation process, attention should be paid to factors such as the selection and dosage of reagents, flotation time and concentration. Mica photoelectric sorting technology is a technology that uses optical and electrical properties to classify mica ores. This technology is mainly used in the field of ore processing. By identifying the differences in surface characteristics such as color, texture, and gloss between mica and other minerals, effective separation of mica is achieved. With the continuous advancement of science and technology, photoelectric sorting technology has been widely used in the mining field, especially in the beneficiation process of mica ores, showing significant advantages. Compared with other sorting methods, photoelectric sorting has the characteristics of high efficiency, low cost, environmental protection and high intelligence level. Single-layer AI Ore Sorting Machine In practical applications, photoelectric sorting technology has been proven to effectively improve the beneficiation efficiency of mica ore. For example, Mingde Optoelectronics' photoelectric sorting equipment has achieved high-precision identification and sorting on multiple metal and non-metallic minerals, including lithium mica, spodumene, barite, etc. Double-layer AI Ore Sorting Machine Hefei Mingde Optoelectronics Technology Co., Ltd. has introduced AI and big data technology in the field of photoelectric sorting. The AI intelligent sorting machine launched can accurately extract the surface characteristics of mica ore and realize the accurate sorting of ore and impurities. Grinding The grinding process is carried out after flotation is completed, with the purpose of further refining the mica after flotation to the required particle size. The grinding process usually includes two stages: primary grinding and secondary grinding. By adjusting the grinding medium and time, the fineness and uniformity of mica particles can be effectively controlled. There are two main methods for mica grinding: dry and wet, each of which has its own characteristics and applicable occasions. Dry grinding refers to grinding without adding any liquid. This method is simple to operate and has low cost, but due to the lack of lubrication, the heat generated by grinding may cause damage to the mica crystals, affecting its flaky structure and exfoliation. The equipment commonly used for dry grinding includes Raymond mills, ball mills, etc. Wet grinding is to add an appropriate amount of water or other liquids during the grinding process to protect the mica crystals through liquid lubrication and cooling, reduce heat accumulation, and thus protect the structure of the mica from being destroyed. Wet grinding can obtain mica powder with higher purity and better exfoliation, but it requires an additional drying step, and the equipment investment and energy consumption are relatively high. The processing quality of mica powder is directly related to the performance of the final product, so it is particularly important to choose a suitable mill. The selection of the mill needs to consider the characteristics of mica and the required fineness, purity and other requirements. Key points for selecting a mill Type of mill: According to the physical and chemical properties of mica, as well as the required fineness and purity, you can choose a high-pressure mill, a vertical mill, an ultrafine mill, etc. Grinding efficiency: An efficient mill can improve production efficiency and save energy costs. For example, some grinding mills can increase production by more than 40% through optimized design, while saving 30-40% of electricity consumption costs. Environmental performance: Modern grinding mills emphasize environmental performance and are equipped with pulse dust collectors and other equipment to achieve efficient dust removal and meet environmental protection and noise reduction requirements. Product specifications: The grinding mill should be able to produce mica powder specifications that meet the requirements, such as 325 mesh, 600 mesh and other different finenesses. Process adaptability: The grinding mill should be able to adapt to different grinding processes, such as dry and wet methods, and whether special processes such as acid treatment are required to improve the whiteness of mica powder. Specific equipment recommendation High-pressure grinding mill: Suitable for large-scale production, high-pressure suspension roller grinding mills and other models can be provided, suitable for processing mica ores with higher hardness. Vertical grinding mill: Suitable for large-scale production, with high efficiency and low energy consumption, the product particle size can be adjusted to meet different needs. Ultrafine grinding mill: Suitable for the preparation of ultrafine mica powder, can reach micron-level fineness, suitable for application scenarios with strict requirements on fineness. Airflow mill: suitable for dry grinding, crushing mica through high-speed airflow, suitable for preparing ultrafine powder. This is the introduction of mica. In short, as a multi-purpose mineral, mica is not only widely used in industry, but also plays an important role in scientific research and life. With the development of processing technology and different innovations of new technologies, the application prospects of mica will become broader and broader.
  • New Method for Gold Ore Sorting - Photoelectric Sorting New Method for Gold Ore Sorting - Photoelectric Sorting Aug 30, 2024
    Gold has always been a dazzling word. It is a symbol of wealth and power, and it also carries the profound connotation of culture, history and religion. At present, the main sources of gold are mining, recycling, sale and leasing by central banks and international organizations, and seabed mining. Mining has always been the most traditional and stable source of gold, accounting for about 70% of the entire gold market. Gold mines are widely distributed, and there are gold resources in many countries and regions around the world. According to the latest information, gold resources are mainly concentrated in Africa, Asia, South America, North America and Australia. Among them, Africa has the richest gold resources, and South Africa, Ghana, Senegal and other countries are the main gold production areas in Africa. Asia, especially China, Russia and India, also has a large amount of gold resources. Brazil, Peru and Colombia in South America are also important gold production areas. Canada and the United States in North America are the main gold production areas, and Australia is one of the most important gold resource countries in the world. Gold mining is a complex and technology-intensive process, involving multiple links from exploration, mining, beneficiation to smelting. Gold mining requires not only advanced equipment and technology, but also environmental protection and safety production requirements. Exploration is the first step in gold mining. The location and reserves of gold mines are determined through geological exploration technology. Preparatory work before mining includes infrastructure construction, such as building roads and setting up necessary facilities. There are two main mining methods: open-pit mining and underground mining. Open-pit mining is suitable for surface deposits, while underground mining is suitable for deeper ore bodies. During the mining process, commonly used equipment includes drilling machines, blasting equipment and mine cars. Ore dressing is to process the mined ore to extract the gold. Ore dressing processes include crushing, grinding, screening, gravity separation and flotation. Crushing and grinding are to reduce the particle size of the ore for subsequent processing; screening is to separate ores of different particle sizes; gravity separation and flotation are to separate gold and other minerals by physical and chemical methods. With the continuous advancement of science and technology, photoelectric separation has also become an important way of gold ore separation. It detects minerals through photoelectric sensors based on the optical properties of minerals, such as color, texture, gloss, shape, etc., to achieve mineral sorting. Photoelectric sorting technology is developed on the basis of traditional mineral processing technology. It has the advantages of high efficiency, environmental protection, and energy saving. The sorting equipment mainly consists of four parts. Feeding system: Through the vibrating feeder and crawler, the materials to be sorted are fed into the detection area of ​​the photoelectric system at a constant speed to ensure the stability of the sorting effect. Photoelectric system: It consists of a light source, a background plate, a sensor or an X-ray source, and a transmission plate. By collecting the comprehensive characteristics of the ore surface or the density difference, the ore is imaged in high definition, and the sensor is converted into an electrical signal to convey it to the electronic control system. Control system: Receives the electrical signal transmitted by the photoelectric system, identifies and analyzes it, and through model training and learning, intelligently identifies and compares good and bad ores, and realizes the identification and sorting of non-massive ore data. Sorting system: According to the instructions of the electronic control system, the defective products are blown into the defective product tank through the spray valve to achieve the sorting purpose. AI Ore Sorting Machine The advantage of photoelectric sorting technology for gold mines is that it can improve the efficiency and accuracy of mineral processing while reducing environmental pollution. Compared with traditional physical and chemical mineral processing, photoelectric mineral processing has lower energy consumption, and the cost of mineral processing per ton is about 1 yuan, which is much lower than the average cost of traditional methods. In addition, photoelectric mineral processing has zero pollution to the environment and is a greener way of mineral processing. Hefei Mingde Optoelectronics Technology Co., Ltd. has been focusing on the research and development, production and sales of photoelectric sorting equipment since its establishment. For gold mine sorting, the company currently has two main equipment solutions to choose from: for those gold mines with better dissociation and obvious surface characteristics of ore and impurities, the company's AI intelligent sorting machine can achieve effective sorting. For gold mines with good ores and impurity surface characteristics that are not obvious, the company has launched an X-ray intelligent sorting machine, which can combine the analysis of different densities of ore and impurities to achieve gold mine sorting. X-ray Intelligent Ore Sorting Machine Gold mines are an important natural resource, and their mining and processing have a profound impact on the national economy and the global market. With the advancement of science and technology and changes in market demand, gold mining and mineral processing technologies continue to develop and innovate to adapt to more efficient and environmentally friendly mining models. At the same time, as a metal with multiple functions, gold's position in the field of financial investment cannot be ignored. In the future, as the global economic landscape evolves, the gold mining industry and its related investment products will continue to play an important role on the international stage.
  • Market Application and Sorting of Industrial Silicon Market Application and Sorting of Industrial Silicon Aug 31, 2024
    Overview Industrial silicon, also known as metallic silicon or crystalline silicon, is an important industrial raw material. Its main component is silicon element, and the content is generally around 98%. In recent years, products containing 99.99% Si have appeared on the market. The rest of industrial silicon is mainly composed of impurities such as iron, aluminum, and calcium. Industrial silicon is divided into various specifications due to its different uses. Common grades include 553, 441, etc. These grades represent the maximum content of the main impurity elements iron, aluminum, and calcium in the product. Industrial silicon is widely used in many fields such as metallurgy, chemical industry, machinery, electrical appliances, and aviation. The chemical composition of industrial silicon mainly exists in the form of silicon element, and the content is usually above 98.7%. In addition, it also contains a small amount of impurities such as iron, aluminum, and calcium. The physical properties of industrial silicon are high hardness, high melting point, good heat resistance, and high resistivity. At the same time, it is non-conductive below 650°C and can be used as an insulating material; it begins to conduct electricity above 650°C, and its conductivity continues to increase with the increase of temperature. Global Industrial Silicon Production Pattern and Trade Flow At present, the global industrial silicon production capacity is concentrated in China, Brazil, Norway, the United States, Russia and other countries. Among them, Brazil and the United States have high-quality silicon ore resources, and Norway has abundant hydropower resources. The growth of China's industrial silicon production capacity is mainly contributed by domestic production capacity. China has an inherent production cost advantage and has been ranked first in the world for many years. China, Brazil, Norway and other countries are not only the main producers of industrial silicon, but also the main exporters. In 2021, China's industrial silicon (including 97 silicon and silicon) production accounted for 78% of the world, and Brazil (7%), Norway (6%), the United States (3%), France (3%) and other countries also have a certain output. The production of industrial silicon mainly adopts the submerged arc furnace method, which uses the arc energy between electrodes to melt the metal. It is the main process for the production of industrial silicon in China. During the production process, silica and carbonaceous reducing agent are first placed in the submerged arc furnace, and industrial silicon liquid is generated through high-temperature reduction reaction, and then block or granular industrial silicon is generated through casting, cooling, crushing and other steps. Market Application of Industrial Silicon Due to its special physical and chemical properties, industrial silicon has a wide range of applications in many fields. The following are the applications of industrial silicon in different fields: Photovoltaic industry Industrial silicon plays an important role in the photovoltaic industry. Polycrystalline silicon and monocrystalline silicon panels are the core components of solar photovoltaic power generation, and high-quality industrial silicon is an indispensable raw material in the preparation of these materials. Industrial silicon is purified through a series of processes to generate polycrystalline silicon and monocrystalline silicon for use in the photovoltaic industry and the electronics industry. Crystalline silicon cells are mainly used in solar rooftop power stations, commercial power stations and urban power stations with high land costs. They are the most technologically mature and widely used solar photovoltaic products, accounting for more than 80% of the world's photovoltaic market. Semiconductor industry In the field of semiconductor manufacturing, the high purity of industrial silicon ensures the reliability and stability of the semiconductor manufacturing process. Industrial silicon is the basic material of semiconductor chips, and the presence of any impurities will affect the quality and performance of the chips. Industrial silicon can produce high-quality silicon wafers through melting and crystal growth technology, which are used to manufacture electronic devices such as transistors and integrated circuits. Aluminum alloy manufacturing Industrial silicon plays a key role in the production process of aluminum alloys. As an alloying element, industrial silicon can adjust the properties of aluminum alloys by controlling the amount of addition, such as improving hardness, strength and wear resistance. In addition, industrial silicon can also improve the heat resistance and corrosion resistance of aluminum alloys, making them perform better in high temperature and corrosive environments. Aerospace Industrial silicon is used to manufacture high-performance structural materials in the aerospace field due to its characteristics such as light weight, high strength and high temperature stability. For example, in the outer shell material of spacecraft, industrial silicon can provide excellent resistance to thermal stress and can also resist high-speed wear. Industrial silicon can also be prepared into high-strength spacecraft parts, such as engine turbine blades. Chemical industry In the chemical industry, industrial silicon can be used as key raw materials such as catalysts, fillers and fire retardants. For example, catalysts can reduce the activation energy of the reaction, increase the reaction rate and selectivity; fillers can increase the contact area of ​​the reactants and improve the reaction efficiency; fire retardants can improve the fire resistance of the material and reduce the occurrence of fire accidents. New energy vehicles In the field of new energy vehicles, industrial silicon is widely used in the manufacture of key components such as batteries, motors and electronic controls. The high energy density and stability of industrial silicon make it an ideal material for new energy vehicle batteries. Construction and electronics Industrial silicon is also used in building sealing materials and waterproof materials, as well as in the field of electronics and electrical insulation. For example, silicone rubber has good high temperature resistance and is used to make medical supplies, high temperature resistant gaskets, etc. Sorting of Industrial Silicon As an important industrial raw material, the sorting technology of industrial silicon plays a vital role in ensuring product quality and improving resource utilization. The sorting technology of industrial silicon mainly includes two categories: physical methods and chemical methods. Physical methods are mainly based on the physical properties of minerals, such as density, conductivity, magnetism, etc. for sorting. Chemical methods use the differences in the chemical properties of minerals for separation. In practical applications, multiple methods are often combined to achieve the best sorting effect. Physical sorting technology Physical sorting technology mainly includes heavy medium beneficiation, flotation, magnetic separation and electrostatic separation. Heavy medium beneficiation uses the difference in mineral density to achieve separation; flotation relies on the chemical properties of the mineral surface for separation; magnetic separation uses the difference in the magnetic properties of minerals for sorting; and electrostatic separation uses the difference in the electrical properties of minerals for sorting. These methods have their own advantages and disadvantages and are suitable for different types of ores and sorting requirements. Chemical sorting technology Chemical sorting technology includes acid-base leaching, solvent extraction and other methods. These methods are mainly used to process ores that are difficult to effectively sort by physical methods, especially when the ore contains fine particles or film-like impurities that are difficult to separate by physical methods. New sorting technology In recent years, with the advancement of science and technology, new sorting technologies have gradually been applied to the sorting process of industrial silicon. For example, artificial intelligence sorting technology achieves higher-precision sorting by identifying the multi-dimensional three-dimensional characteristics of silicon slag and establishing a model. In addition, color sorting technology is also used in the purification of silica raw materials. By distinguishing the difference in color, sorting is carried out, which effectively improves the purity of silica. Since its establishment in 2014, Hefei Mingde Technology Co., Ltd. has been a high-tech enterprise dedicated to the research and development, design, production, sales and service of ore sorting equipment. The current main products include ore sorting machine, AI intelligent sorting machine, X-ray intelligent sorting machine, foreign body removal robot and mining automation production line, etc. AI Ore Sorting Machine Among them, the AI ​​intelligent sorting machine produced by the company can accurately extract the surface features of industrial silicon, conduct deep learning to form a model, and match the industrial silicon with the existing model in the subsequent sorting, so as to achieve accurate sorting. At present, the machine has been put into the actual production of industrial silicon and has received very good market response. Heavy Duty AI Ore Sorting Machine As an important industrial raw material, industrial silicon plays an indispensable role in modern industry. From its production process to application field, to market status and development trend, industrial silicon has demonstrated its unique value and broad development prospects. With the continuous advancement of technology and changes in market demand, the industrial silicon industry will continue to maintain a rapid development trend and make greater contributions to the development of human society.

leave a message

leave a message
If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.
Submit

home

products

whatsApp

contact